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Abstract

Comparative structure models are available for two orders of magnitude more protein sequences than
are experimentally determined structures. These models, however, suffer from two limitations that ex-
perimentally determined structures do not: They frequently contain significant errors, and their accuracy
cannot be readily assessed. We have addressed the latter limitation by developing a protocol optimized
specifically for predicting the Ca root-mean-squared deviation (RMSD) and native overlap (NO3.5Å)
errors of a model in the absence of its native structure. In contrast to most traditional assessment scores
that merely predict one model is more accurate than others, this approach quantifies the error in an ab-
solute sense, thus helping to determine whether or not the model is suitable for intended applications.
The assessment relies on a model-specific scoring function constructed by a support vector machine.
This regression optimizes the weights of up to nine features, including various sequence similarity mea-
sures and statistical potentials, extracted from a tailored training set of models unique to the model being
assessed: If possible, we use similarly sized models with the same fold; otherwise, we use similarly sized
models with the same secondary structure composition. This protocol predicts the RMSD and NO3.5Å
errors for a diverse set of 580,317 comparative models of 6174 sequences with correlation coefficients (r)
of 0.84 and 0.86, respectively, to the actual errors. This scoring function achieves the best correlation
compared to 13 other tested assessment criteria that achieved correlations ranging from 0.35 to 0.71.

The explosive growth of sequence databases has not been
accompanied by commensurate growth of the protein
structure database, the Protein Data Bank (PDB) (Berman
et al. 2000). Of the millions of known protein sequences,
well fewer than 1% of their corresponding structures have
been solved experimentally. Computationally derived
structure models serve to bridge this gap, owing to the
prediction of two orders of magnitude more structures
than are currently available (Pieper et al. 2006). In the

absence of an experimentally determined structure, such
computational models are often valuable for generating
testable hypotheses and giving insight into existing ex-
perimental data (Baker and Sali 2001).

Computationally derived structure models, however,
generally suffer two major limitations that can limit their
utility: They frequently contain significant errors, and
their accuracy cannot be readily assessed. Indeed, even if
a method sometimes produces accurate solutions, the av-
erage precision is still low (Baker and Sali 2001; Bradley
et al. 2005). There is currently no practical way to easily
and robustly assess the accuracy of a predicted structure,
which is problematic for the end users of the models, who
cannot be certain that a model is accurate enough in the
region(s) of interest to give meaningful biological insight.
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It is often only after performing time-consuming experi-
ments that a model’s accuracy is determined reliably.

Comparative modeling is the most widely used and
generally most accurate class of protein structure pre-
diction approaches (Marti-Renom et al. 2000; Tramontano
et al. 2001; Eswar et al. 2007). The accuracy of a compara-
tive model is weakly correlated with the sequence identity
shared between the target sequence and the template
structure(s) used in the modeling procedure (Sanchez
et al. 2000). At high sequence identity ranges (i.e., over
50% sequence identity), comparative models can be accu-
rate enough to be useful in virtual ligand screening or for
inferring the catalytic mechanism of an enzyme (Bjelic and
Aqvist 2004; Caffrey et al. 2005; Chmiel et al. 2005;
Costache et al. 2005; Xu et al. 2005). At lower values of
sequence identity, especially below 30%, alignment errors
and differences between the target and template structures
can become major sources of errors (Chothia and Lesk
1986; Rost 1999; Sauder et al. 2000; Jaroszewski et al.
2002; Ginalski et al. 2005; Madhusudhan et al. 2006; Rai
and Fiser 2006). In automated comparative modeling of all
known protein sequences related to at least one known
structure, 76% of all models are from alignments in which
the target and template share less than 30% sequence
identity (Pieper et al. 2006), where the corresponding
models can have a wide range of accuracies (Sanchez
et al. 2000; Chakravarty and Sanchez 2004).

Because of the wide accuracy range of models, many
assessment scores have been developed for tasks includ-
ing (1) determining whether or not a model has the cor-
rect fold (Miyazawa and Jernigan 1996; Park and Levitt
1996; Domingues et al. 1999; Lazaridis and Karplus
1999; Gatchell et al. 2000; Melo et al. 2002; McGuffin
and Jones 2003; Melo and Sali 2007), (2) discriminating
between the native and near-native states (Sippl 1993;
Melo and Feytmans 1997, 1998; Park et al. 1997; Fiser
et al. 2000; Lazaridis and Karplus 2000; Zhou and Zhou
2002; Seok et al. 2003; Tsai et al. 2003; Shen and Sali
2006), (3) selecting the most native-like model in a set of
decoys that does not contain the native structure (Shortle
et al. 1998; Wallner and Elofsson 2003; Eramian et al.
2006; Qiu et al. 2007), and (4) predicting the accuracy of
a model in the absence of the native structure (Wallner
and Elofsson 2003, 2006; Eramian et al. 2006; McGuffin
2007). Despite the large body of work devoted to the first
three tasks, however, relatively little work has been de-
voted to the last task, predicting the absolute accuracy of
computational models. Due to the enormity of the con-
formational search problem, prediction methods often
produce a large number of models and use a score or
scores to predict which are most accurate: These ap-
proaches determine the relative accuracy of models.
However, even if the selection score worked perfectly
(i.e., was able to identify the most accurate model from

among the many models produced), the user does not
necessarily have any sense of the absolute accuracy of the
selected model. Although the selected model might be
more accurate than the others produced, is it accurate
enough? For example, is the best model expected to have
a Ca root-mean-square deviation (RMSD) of 2.0 Å, or
9.0 Å? Nearly all traditional assessment scores do not ad-
dress these questions, often reporting scores in pseudo-
energy units or arbitrary values that correlate poorly with
accuracy measures such as RMSD. Here, we use the phrase
‘‘absolute accuracy’’ to mean the actual geometrical accu-
racy, such as RMSD and MaxSub (Siew et al. 2000), which
could be calculated if the true native structure were known.
In the absence of the native structure, the absolute accuracy
is not known and must be predicted.

Predicting the absolute accuracy of a model is partic-
ularly difficult due to the lack of principled reasons why
an individual assessment score should correlate well with
accuracy measures such as RMSD, particularly if the
models are not native-like (Fiser et al. 2000). Attempts to
predict absolute accuracy have included methods based
on neural networks (Wallner and Elofsson 2003), support
vector machines (SVMs) (Eramian et al. 2006), and multi-
variate regression (Tondel 2004). While such approaches
can perform well for small families or are able to select
the most native-like model in a set of decoys that does not
contain the native structure, to our knowledge no ap-
proach has demonstrated a clear ability to predict the
absolute accuracy of a large, diverse set of models repre-
sentative of real-world use cases.

Here, we describe a protocol for predicting absolute
accuracy by which a model-specific scoring function is
developed using SVM regression. For an input compara-
tive model, a unique training set is created from an ex-
tremely large database of models of known accuracy (i.e.,
their native structures are known and their accuracies can
thus be calculated). Two predictions are made from this
training set for each query structure model: (1) the RMSD
of the model and (2) the native overlap (NO3.5Å), where
native overlap is defined as the fraction of Ca atoms in a
model that are within 3.5 Å of the corresponding atoms in
the native structure after rigid body superposition of the
model to the native structure (Sanchez et al. 2000). By
creating a model-specific tailored training set consisting
only of models structurally similar to the assessed model,
we gain the ability to predict RMSD and NO3.5Å with a
high correlation to the actual RMSD and NO3.5Å values
for a diverse set of 580,317 comparative models (r ¼ 0.84
and 0.86, respectively).

We begin by describing the performance of our score at
predicting absolute accuracy (Results). We then discuss
the implications and application of our approach for
large-scale computational prediction efforts (Discussion).
Finally, we describe the test set and testing database, the
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metrics used to evaluate accuracy, and the process for
developing the score (Methods).

Results

Test set properties

An extremely large test set of 580,317 comparative
models from 6174 sequences was constructed to test our
protocol. The properties of the set mirror those observed
in large-scale protein structure prediction efforts (Pieper
et al. 2006). Most models (461,202 models; 80%) were
from alignments in which the sequence identity between
the target and template was under 30%, and 94%
(541,238 models) had less than 40% sequence identity
(Fig. 1A). The median length of the input sequences was
181 residues, and the median model size was 111 residues
(Fig. 1B). Though the median sequence length was longer
than the ;156-residue average size of protein domains

found in the PDB (Berman et al. 2000; Shen et al. 2005),
78% of the models (455,347) were smaller than this size,
reflecting that local, rather than global, alignments were
used for modeling (Methods).

The accuracy distribution of the models was broad
(Fig. 1C,D). The median RMSD value of the set was
7.0 Å, and the median NO3.5Å value was 0.46. Only 6%
(36,063 models) had RMSD values <2.0 Å, a low number
resulting from the filtering performed prior to construc-
tion of the test set, as well as the inability of the
comparative modeling protocol to consistently produce
models more native-like than the template structure.

Correlations between actual model accuracy
and assessment scores

Correlation coefficients were calculated between the nine
input features and the three geometric accuracy metrics
(RMSD, NO3.5Å, and MaxSub). The accuracy of models

Figure 1. Properties of the 580,317 model testing set (A–D). The y-axis on the left indicates the number of models that fall into the corresponding bin indicated

by the x-axis. The line and right y-axis correspond to the cumulative percentage of total models having the appropriate feature. (A) The global sequence identity

shared between target/template alignments of the test set. Approximately 80% of the models are from alignments in which the target and template share less

than 30% sequence identity. (B) The length distribution of models in the test set (median ¼ 111 amino acids). (C) The Ca RMSD distribution of the models,

with a bin size equal to 2.0 Å (median ¼ 7.0 Å). (D) The native overlap distribution, calculated using a cutoff of 3.5 Å (median ¼ 0.46).
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varied widely as sequence identity decreased (Fig. 2A),
making sequence identity a relatively uninformative
measure for estimating model accuracy. The Pearson
correlation coefficient (r) between sequence identity
and native overlap was only 0.54 (Table 1).

Of the nine features used for SVM training, N-DOPE had
the highest correlation coefficient with RMSD, NO3.5Å,
and MaxSub (Table 1). N-DOPE was particularly well suited
for identifying near-native (N-DOPE scores below �1.5), or
inaccurate (scores above 1.0) models. However, a majority of
models (80%) had N-DOPE scores between �1.5 and 1.0,
where N-DOPE was not strongly correlated with NO3.5Å
(Fig. 2B) or MaxSub (Table 1). For example, the first and
third quartile NO3.5Å values for models with N-DOPE values
of ;0.0 were 0.15 and 0.64, respectively, giving a wide range
around the median NO3.5Å value of 0.43. The correlation
coefficient between N-DOPE and NO3.5Å was 0.71.

In contrast, the correlation between the actual and
predicted native overlap was 0.86 (Fig. 2C). Furthermore,

the median absolute difference between the actual and
predicted NO3.5Å values was only 0.07, with first and third
quartile values of 0.03 and 0.16, respectively. The split
between predictions that were higher and lower than the
actual values was 56% and 44%, respectively. The correla-
tion between actual and predicted RMSD was 0.84, display-
ing great linearity even out to high RMSD values (Fig. 2D).
The median absolute difference between the actual and
predicted RMSD values was 1.3 Å for all 580,317 models.
Considering only those models below 5.0 Å RMSD, the
median absolute difference between the actual and predicted
values was only 0.71 Å. RMSD predictions were also closely
split between those that were higher (48%) and lower (52%)
than the actual values.

ProQ and ModFOLD were used to compare the
performance of the model-specific scoring approach to
approaches that do not benefit from learning from a
specific training set. The correlation between the actual
and predicted MaxSub scores was highest for ProQ-SS,

Figure 2. The relationships between the actual NO3.5Å and sequence identity (A; r ¼ 0.54); the normalized DOPE score (B; r ¼ 0.71); and the predicted

native overlap (C; r ¼ 0.86). In each plot, the diameter of a bubble represents the number of examples contained in the 2D bin indicated by the x- and

y-axes. The bubble size is comparable between the different plots. Additionally, the median value for each bin is depicted by the solid line, where the upper

and lower error bars indicate the third and first quartile values, respectively. (D) The relationship between the predicted and actual RMSD (r ¼ 0.84).
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at 0.72 (Table 1), significantly less accurate than the
correlation between the predicted NO3.5 Å and MaxSub
of 0.83 given by our protocol. Thus, even though our
protocol was designed to predict NO3.5Å and not Max-
Sub, the resulting predictions were much better correlated
with the actual MaxSub scores than the ProQ predictions
that were designed specifically for this task.

ModFOLD was run on 36,453 randomly selected models
for 225 sequences from our test set. The correlation
coefficient between the ModFOLD score and RMSD for
these 36,453 models was 0.51, and the correlation coef-
ficient between NO3.5Å and the ModFOLD score was 0.63
(see, Table 3). In comparison, TSVMod’s correlations were
0.85 and 0.88, respectively, which is essentially identical to
the values obtained for our full test set.

Fold assessment

Fold assessment is a particularly important problem at lower
values of sequence identity, when it is possible that the
template used to construct a model does not have the same
fold. As expected, the sequence identity of the target/
template pair used to construct the model was only margin-
ally useful for assessing whether the model had the correct
fold. The GA341 and N-DOPE scores, both developed for
fold assessment, were better at classifying models correctly.
By use of 0.30 as the NO3.5Å threshold for defining whether
or not a model has the correct fold, the calculated areas

under the ROC curve (Methods) for sequence identity,
GA341, N-DOPE, and the predicted NO3.5Å were 0.80,
0.86, 0.87, and 0.93, respectively (Fig. 3). With a NO3.5Å
threshold of 0.50, these values were 0.81, 0.84, 0.86, and
0.93, respectively (data not shown). Thus, using the pre-
dicted NO3.5Å value to classify whether or not a model has
the correct fold was significantly more accurate than the
other fold assessment scores tested.

Residue neighborhood accuracy

Two structure-derived properties, the solvent exposure
state and the residue neighborhood (Chakravarty and
Sanchez 2004), were calculated for 25,000 models of
100–200 residues randomly selected from the test set. The
accuracy of a residue’s neighborhood was calculated
by comparing the contacts made by a residue with its
neighbors in the model, versus those made by that residue
in the native structure, thereby measuring the percentage
of contacts that are accurately modeled. There was a clear
decrease in the median neighborhood accuracy (Fig. 4A)
for models constructed from target/template pairs sharing
less than 40% sequence identity (96% of the 25,000 models),
with an overall correlation of r ¼ 0.57. In contrast, the
neighborhood accuracy was more correlated with the pre-
dicted native overlap value (r ¼ 0.82) (Fig. 4B), with much
tighter first and third quartile error bars.

Residue exposure state

The second assessed structure-derived property was the
exposure state of a residue. A residue was defined as

Figure 3. Receiver operating characteristic (ROC) curves for fourfold

assessment classifiers: the predicted native overlap (solid black line); the

normalized DOPE score (dashed black line); the GA341 score (solid gray

line); and the sequence identity shared between the target and the template

(dashed gray line). For each measure, the area under the curve is noted. A

model was defined as having the correct fold if NO3.5Å $ 0.30.

Table 1. The correlation coefficients (r) between the actual
model accuracy and assessment scores on the full 580,317 model
testing set

RMSD
Native overlap

(3.5 Å) MaxSub

Actual RMSD 1 0.78 0.78

Actual NO3.5Å 0.78 1 0.9

Actual MaxSub 0.72 0.9 1

Predicted RMSD 0.84 0.75 0.74

Predicted NO3.5Å 0.73 0.86 0.83

N-DOPE 0.64 0.71 0.73

Sequence identity 0.43 0.54 0.54

Z-PAIR 0.37 0.51 0.55

Z-SURFACE 0.4 0.51 0.55

Z-COMBINED 0.41 0.55 0.59

GA341 0.54 0.67 0.69

Percentage unaligned

residues 0.35 0.41 0.37

PSIPred agreement 0.51 0.58 0.63

PSIPred weighted 0.43 0.51 0.55

ProQ predicted LGScore 0.35 0.49 0.5

ProQ predicted

MaxSub 0.5 0.63 0.65

ProQ (SS) predicted

LGScore 0.44 0.58 0.6

ProQ (SS) predicted

MaxSub 0.57 0.71 0.72

ProQres (SS) 0.41 0.56 0.58
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exposed if it had relative surface accessibility larger than
40%, using the method of Lee and Richards (1971)
calculated by Naccess v2.1.1 (Hubbard et al. 1991).
Exposure state accuracy was observed to be higher than
neighborhood accuracy; with less decrease in accuracy as
sequence identity fell below 40% (Fig. 4C). The overall
correlation between the sequence identity and exposure
state accuracy was 0.56, well below that between the
predicted native overlap and correct exposure state (r ¼
0.65) (Fig. 4D).

Discussion

A limitation of comparative models is that their accuracy
cannot be readily and robustly assessed. We have ad-
dressed this problem by developing a protocol for deriv-
ing SVM regression models optimized specifically for
predicting the actual RMSD and NO3.5Å values of a
model in the absence of its native structure. SVM regres-

sion was used to combine up to nine features (sequence
identity, N-DOPE, Z-PAIR, Z-SURFACE, Z-COMBINED,
percentage of gaps in the target/template alignment,
GA341, and two PSIPRED/DSSP scores) extracted from
a tailored training set unique for the query structure model
being assessed. This protocol is able to predict the RMSD
and NO3.5Å values for a large, diverse set of comparative
models with correlation coefficients of 0.84 and 0.86, respec-
tively, to the actual RMSD and NO3.5Å values (Table 1).

The test set used for this study consisted of 580,317
models, for 6174 sequences. This set is approximately an
order of magnitude larger, and contains one to two orders
of magnitude more sequences, than typical model assess-
ment test sets (Samudrala and Levitt 2000; Tsai et al.
2003; Wallner and Elofsson 2003; Eramian et al. 2006).
The properties of this set parallel those seen in large-scale
comparative modeling, and the models span virtually all
SCOP (Andreeva et al. 2004) fold types (Table 2), protein
sizes (Fig. 1B), and accuracies (Fig. 1C,D). There are two

Figure 4. Relationship between structure-derived properties and the predicted accuracy for 25,000 randomly selected models of length 100–200 amino

acids. (A) The percentage of correct neighborhood (solid line) is plotted versus the sequence identity shared between the target and the template used to

construct the model (r ¼ 0.57). The solid line indicates the median value for the bin; the upper and lower error bars indicate the third and first quartile

values for the bin, respectively. The columns indicate the fraction of examples that are contained in each bin (right y-axis). (B) Relationship between the

predicted native overlap and the neighborhood accuracy of a model (r ¼ 0.82). (C) The percentage of exposed residues correctly modeled as exposed versus

sequence identity (r ¼ 0.56). (D) Percentage of exposed residues correctly modeled as exposed versus predicted NO3.5Å (r ¼ 0.65).
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features of this test set that reflect the difference between
our goal of predicting the absolute accuracy of compara-
tive models and traditional model assessment tests. First,
the set contains no native structures, only models. A
common relative accuracy test is that the native structure
scores lower than all other models (Gatchell et al. 2000).
While it is certainly a necessary condition that the native
state is separable from decoys, it is far from sufficient,
particularly in real use cases, where the best model
produced is often far from native. Second, only one
model, rather than many, is built per alignment, because
the goal was not to determine the ability of assessment
scores to identify the best model from among sets of
similar models. Such relative accuracy assessments are
important because they more closely replicate the real-
world conditions in which assessment scores are used.
However, such tests overlook that even if the model
assessment scores are able to both correctly identify the
native structure from among a set of decoys and identify
the most accurate model from among a set of similar
models, an end-user still has little information about how
accurate the model actually is.

The prediction of absolute accuracy is a difficult
problem that has not been given great attention. It has
been argued that there are no principled reasons why an
individual assessment score should correlate with an
accuracy metric, particularly if the model is not native-
like (Fiser et al. 2000). Our own data support this
contention, as all of the individual statistical potentials
tested were relatively ill-suited for predicting absolute
accuracy (Table 1). The DOPE (Discrete Optimized
Protein Energy) score, for example, has been shown to

be an extremely accurate model assessment score in a
number of studies (Colubri et al. 2006; Eramian et al.
2006; Shen and Sali 2006; Fitzgerald et al. 2007; Marko
et al. 2007; Lu et al. 2008), yet correlates poorly with
accuracy measures such as RMSD and NO3.5Å when
tested on our large test set (Fig. 2B). Attempts have been
made to predict absolute accuracy by combining a
number of assessment scores (Wallner and Elofsson
2003; Eramian et al. 2006; McGuffin 2007). Even in
these studies, however, the reported correlation coeffi-
cients between the predicted and actual accuracy mea-
sures was low, ranging from 0.35 to 0.71; moreover, these
results were obtained on much smaller and less diverse
test sets than the set employed here. For example, when
we tested the ProQ method on the 580,317 models of our
test set, the correlation between the actual and predicted
MaxSub was only 0.72 (Table 1). Not only was ProQ’s
correlation with MaxSub slightly lower than that of N-
DOPE (r ¼ 0.73), but it was far lower than the correlation
between the predicted NO3.5Å and actual MaxSub
obtained by the model-specific approach (r ¼ 0.83), even
though the MaxSub score was not predicted by the model-
specific protocol. Had MaxSub been predicted in place of
NO3.5Å, the performance gap between ProQ and the
model-specific approach could only be larger. Similarly,
the correlation between the accuracy measures and the
ModFOLD scores were far lower than those between the
actual and predicted values from TSVMod (Table 3).

These results illustrate the utility of constructing a
scoring function specific for the input model. A unique
feature of our approach is the optimization of the weights
of the individual scores specifically for the fold and size
of the model being assessed, rather than for a variety of
proteins of many shapes and sizes. The difference
between our approach and other composite scores is
analogous to the difference between position-specific
scoring matrices (PSSMs) and generalized substitution
matrices (e.g., BLOSUM62) employed in alignment
algorithms. The use of a tailored training set for optimiz-
ing the weights of input features is crucial, as different
assessment scores perform better for different sizes and

Table 2. The correlation coefficients (r) between the actual
model accuracy and assessment scores for different SCOP fold
classes

No. of
sequences

No. of
models RMSD NO3.5Å

Entire set 6174 573,977 0.84 0.86

NMR template 3124 90,257 0.76 0.74

X-ray template 6166 483,720 0.84 0.87

SCOP all 3589 326,314 0.84 0.86

All a (SCOP A) 795 52,905 0.85 0.86

All b (B) 839 142,614 0.83 0.85

a/b (C) 867 78,056 0.83 0.86

a + b (D) 878 62,402 0.87 0.88

Multi-domain (E) 54 2615 0.88 0.91

Membrane/cell

surface (F) 76 2760 0.57 0.76

Small (G) 298 19,039 0.82 0.84

Coiled coil (H) 83 3538 0.65 0.9

Low resolution (I) 10 294 0.61 0.76

Peptides (J) 64 752 0.48 0.52

Designed (K) 17 746 0.76 0.84

Table 3. The correlation coefficients (r) between the actual
model accuracy and assessment scores on a 36,453 model
testing set

RMSD
Native overlap

(3.5 Å) MaxSub

Predicted RMSD 0.85 0.78 0.76

Predicted NO3.5Å 0.76 0.88 0.85

N-DOPE 0.69 0.73 0.75

ModFOLD 0.51 0.63 0.61

ProQ (SS) predicted

MaxSub 0.56 0.67 0.67
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shapes of proteins, and their contributions to the overall
composite score need to be adjusted accordingly. Our
results show the SVM algorithm can find appropriate
weights for the features: First, optimally combining the
features results in scores that correlate well with RMSD
and NO3.5Å (Table 1), although the overall correlation
coefficients of each of the input features is low; second,
there is a linear relationship between the actual and
predicted accuracy (Fig. 2C,D). Most importantly, not
only do the predictions correlate well with the actual
accuracy of the models, but also the difference between
the actual and predicted values is small (Fig. 2C,D).

The primary advantage of our approach relative to most
model assessment scores is that the prediction of absolute
accuracy gives users confidence in the use of models for
their experiments. For comparative models, the sequence
identity shared between the target sequence and template
structure has historically been used to estimate the
accuracy of models, as it is easy to calculate and
appreciate. Sequence identity, however, is a relatively
poor predictor of model accuracy, especially below 40%
(Figs. 2A, 3; Table 1), and actually adds little to the
performance of TSVMod: Omitting sequence identity as
a feature does not change the correlation coefficient
between the actual and predicted RMSD, while the
correlation coefficient between the actual and predicted
NO3.5Å is reduced to 0.85 (from 0.86). Given these
limitations of sequence identity, many researchers have
been reluctant to use comparative models based on less
than 30% sequence identity in their research for fear of

errors. The reason is that the accuracy of such models can
vary widely (Figs. 2A, 3; Table 1) and there has been no
practical way to robustly and reliably predict the absolute
accuracy of these models. As a result, the utility of
comparative modeling is significantly reduced, because
76% of all comparative models are based on less than
30% sequence identity (Pieper et al. 2006). Our model-
specific approach would result in a dramatic increase in
the number of comparative models correctly assessed as
useful by helping identify those that are accurate (Fig.
2A,B) and filtering incorrect models from consideration
(Fig. 3). Of the 580,317 models in the test set, 485,066
models (84%) were from alignments with less than 30%
sequence identity; 173,139 of these models had actual
RMSD values below 5.0Å, and were predicted as such
(36% of the 580,317 total models). Figure 5 shows two
of the many examples where target/template alignments
shared under 12.5% sequence identity, but the models
produced were accurate and assessed as such by the
predicted RMSD and NO3.5Å scores.

Similarly, our protocol is able to identify which models
are suitable for many common experiments. Relative to
purely geometric metrics like RMSD and NO3.5Å, the
two structure-derived properties calculated here—the
neighborhood residue accuracy and the percentage of
residues correctly modeled as exposed—are informative
about the utility of a model for specific tasks such as
guiding mutagenesis experiments, biochemical labeling,
annotation of point mutations, protein design, predicting
subcellular localization, in silico ligand docking, and

Figure 5. Examples of successful accuracy predictions where the sequence identity shared between the target and template was less than 12.5%, and yet

very accurate models were constructed. Relying upon the individual features alone, neither model would be assessed as being very accurate, yet the

weighed combination of these features using the model-specific assessment protocol leads to accurate assessments. In both images, the native structure

is colored red and the model is blue. (A) Sequence from murine neuroglobin (PDB code 1q1fA) modeled using 1it2A as a template. (B) Sequence of

4-hydroxybenzoyl CoA thioesterase (1q4tA) modeled using 1s5uA as a template.
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prediction of protein complex structures. Using the
predicted accuracy of the models to estimate the accuracy
of these structure-derived properties results in more
precise and accurate estimates than relying upon
sequence identity (Fig. 4), as has historically been done.

There are, however, a few limitations to our model
assessment protocol. First, the accuracy of the protocol
could be increased if we were willing to sacrifice cover-
age (i.e., not be able to predict the accuracy for all
models). Given the current thresholds, we can predict the
accuracy for 83% of the test set using tailored training
sets populated by models of the same fold as the model
being assessed (Methods) (Fig. 6). If we increased the
minimum training set size threshold from five to 275 and
did not utilize the secondary structure filtering step,
predictions could be made for only 20% of the test set, but
the RMSD and NO3.5Å correlation coefficients would
increase from 0.84 and 0.86 to 0.90 and 0.92, respectively.
A second limitation is that errors in the underlying scores
can affect the accuracy of the prediction. Improvements of
these scores, or the addition of other scores, will further
increase the accuracy of the method.

There are many applications for our model assessment
protocol. First, the protocol is being incorporated into
our comprehensive database of comparative models,
MODBASE, to increase the confidence that end-users
have in using such models for their experiments (Fig.
4B,D). Second, the predicted NO3.5Å value will be used
as a filter to ensure that only models assessed to have the
correct fold are deposited in MODBASE (Fig. 3). Third,
we suggest that the model-specific protocol may also be a
good scoring function for the refinement of comparative
models (D. Eramian and A. Sali, in prep.) because it

displays linearity between the actual and predicted
accuracy even for models that are not native-like (Fig.
2C,D). In contrast, a refinement scheme relying upon a
score such as DOPE would have a more difficult time,
only being able to identify the unlikely event of sampling
a very near-native solution (Fig. 2B). Furthermore, any
refinement scheme built upon the model-specific scoring
protocol would have the benefit of giving the user an
estimate of the actual accuracy of the model. Fourth, we
intend to develop a version of TSVMod using different
feature types that will predict per-residue accuracy, in
the spirit of similar approaches such as ModFOLDclust
(McGuffin 2008), Prosa (Sippl 1993), FragQA (Gao et al.
2007), and ProQres (Wallner and Elofsson 2006).

Finally, though we have principally described our
protocol in the context of evaluating comparative models,
we believe the construction of a tailored training set
by model size and secondary structure content will ulti-
mately be applicable to models generated by any method,
including de novo predictions. Using this filtering step on
the test set and using only alignment-independent scores
(N-DOPE, Z-PAIR, Z-SURFACE, Z-COMBINED, and
two PSIPRED/DSSP scores) as input features, we can
currently predict the RMSD and NO3.5Å errors with
correlation coefficients (r) of 0.80 and 0.81, respectively,
to the actual errors. These numbers are lower than those
of the ‘‘standard’’ TSVMod because: (1) The lack of a
clearly defined template precludes the use of the more
accurate ‘‘left’’ branch of tailored training set construc-
tion (Fig. 6), resulting in a suboptimal tailored training
set; and (2) several informative alignment-based features
(GA341, percentage of gapped residues in the alignment,
sequence identity) cannot be used. In addition, an ap-
plication of TSVMod to models calculated by pro-
grams other than MODELLER may also suffer from the
optimization of the TSVMod features specifically for
MODELLER models (e.g., DOPE can be fooled by
decoys that are packed extremely tightly, as one would
expect in energy-minimized models). In spite of these
three significant limitations, we decided to test how well
the reduced TSVMod performs relative to model quality
assessment (MQAP) programs tested at CASP. The
accuracy values (RMSD and native overlap) were calcu-
lated using MODELLER’s superpose command for
30,186 of the CASP7 models; the remaining 10,120
coordinate files could not be read by MODELLER or
the programs used to calculate features for TSVMod.
TSVMod had correlations with RMSD and NO3.5Å of
0.62 and 0.73, respectively, and the global Spearman rank
correlation coefficient between the actual and predicted
NO3.5Å values was 0.75. Though the Pearson correlation
coefficient values are below those for the ‘‘full’’ TSVMod
on our benchmark of 0.84 and 0.86, respectively, the
Spearman rank correlation coefficient is comparable to

Figure 6. Flowchart depicting the steps to predict the RMSD and NO3.5Å

of an input comparative model.
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the reported values for MQAPs on the CASP7 set
(McGuffin 2007), despite the fact that TSVMod was not
designed for assessing CASP models. Improvement of
TSVMod’s performance at assessing such models would
be expected if additional scores were included as features,
and if the TSVMod training database was populated with
models produced by the method being assessed.

In summary, we have developed a model-specific
scoring protocol to predict the absolute accuracy of
comparative models by optimizing the contributions of
up to nine features via SVM regression. This approach
has been shown to be able to predict the RMSD with a
correlation to the actual RMSD of 0.84; predict the
NO3.5Å with a correlation to the actual NO3.5Å of
0.86; differentiate between correct and incorrect models
better than existing methods; identify models with accu-
rate structure-derived properties better than relying upon
sequence identity; and outperform the ProQ assessment
score in predicting MaxSub of a model, even though our
approach was not developed to predict MaxSub.

Methods

Construction of test set and training database

To create the list of target sequences, all chains in the PDB (25
April 2007 PDB release) were clustered at 40% sequence
identity, resulting in 10,191 unique chains: 3926 PDB files
containing chain breaks, defined as sequentially adjacent Ca
atoms separated by at least 4.0 Å, were removed because chain
breaks are difficult to robustly model in an automated fashion.
The resulting list contained 6265 unique sequences. The
template profile database was constructed by clustering the
PDB at 95% sequence identity, giving 15,631 template struc-
tures (24 Feb 2007 PDB release), with each template profile
built using MODELLER’s profile.build command against the
UniProt-90 database (Apweiler et al. 2004).

Protein structure models were calculated using MODPIPE,
our automated software pipeline for large-scale protein structure
modeling (Eswar et al. 2003). MODPIPE relies on MODELLER
(Sali and Blundell 1993) for its functionality and calculates
comparative models for large numbers of sequences using
different template structures and sequence-structure alignments.
Sequence-structure matches are established using a variety of
fold-assignment methods, including sequence-sequence (Smith
and Waterman 1981), profile-sequence (Altschul et al. 1997),
and profile-profile alignments (Marti-Renom et al. 2004).
Increased sensitivity of the search for known template structures
is achieved by using an E-value threshold of 1.0. The main
feature of the pipeline is that the validity of sequence-structure
relationships is not prejudged at the fold assignment stage but
rather is assessed after the construction of the model by using
several model quality criteria, including the coverage of the
model, sequence identity of the sequence-structure alignment,
the fraction of gaps in the alignment, the compactness of the
model, and statistical energy Z-scores (Melo et al. 2002;
Eramian et al. 2006; Shen and Sali 2006). Using this procedure,
a total of 580,317 unique target/template alignments and
5,790,889 models were produced.

The test set was constructed by taking the first model
produced from each of the 580,317 unique target/template
alignments. The training database consisted of all 5,790,889
models. All models in the test set are also in the training
database; this redundancy is accounted for during testing so the
accuracy of the method is not overestimated. The model files,
alignments, and the accompanying TSVMod predictions and
individual feature scores are all available for download by
anonymous ftp at http://salilab.org/decoys/.

Model accuracy measures

Three geometric accuracy measures were used: the Ca RMSD
value between the model and the native structure after super-
position, the fraction of Ca atoms within 3.5 Å of their correct
positions in the native structure (the native overlap at 3.5 Å or
NO3.5Å), and the MaxSub score (Siew et al. 2000). The RMSD
and NO3.5Å accuracy for each model were calculated by
MODELLER’s superpose command. As NO3.5Å is calculated
by dividing the number of Ca atoms within 3.5 Å from their
correct positions by the length of the sequence, one must choose
an appropriate denominator. We chose to use the number of
residues actually modeled, not the length of the input sequence,
making our NO3.5Å measure a local accuracy measure. MaxSub
was obtained from the Fischer laboratory and run with default
parameters (Siew et al. 2000), with no correction made for the
length of the input target sequence.

Model assessment scores

MODPIPE produces a number of alignment-based and model-
based assessment scores that can be used to analyze the quality
of the models. For each target/template alignment, MODPIPE
calculated the sequence identity and the percentage of unaligned
(gapped) positions. MODPIPE also calculated five model-based
assessment scores: a Ca- and Cb-based distance-dependent
statistical potential score (PAIR) (Melo et al. 2002), a Cb-based
accessible surface statistical potential score (SURFACE) (Melo
et al. 2002), a combined distance and surface potential score
(COMBINED) (Melo et al. 2002), a fold assessment composite
score derived by a genetic algorithm (GA341) (Melo and Sali
2007), and an atomic distance-dependent statistical potential
score (Discrete Optimized Protein Energy or DOPE) (Shen and
Sali 2006). Next, we outline each of these scores.

For each of the PAIR, SURFACE, and COMBINED scores, a
Z-score is calculated using the mean and standard deviation of
the statistical potential score of 200 random sequences with the
same amino acid residue type composition and structure as the
model. These three scores were developed and implemented as
described elsewhere (Melo et al. 2002; Eswar et al. 2003).

The GA341 score was designed to discriminate between
models with the correct and incorrect fold. GA341 is a nonlinear
combination of the percentage sequence identity of the align-
ment used to build the model, the model compactness, and the
Z-score for the COMBINED statistical potential.

The DOPE score is an atomic distance-dependent statistical
potential based on a physical reference state that accounts for
the finite size and spherical shape of proteins by assuming a
protein chain consists of noninteracting atoms in a uniform
sphere of radius equivalent to that of the corresponding protein.
The normalized version (N-DOPE) was used instead of the raw
score; it is a standard score (Z-score) derived from the statistics
of raw DOPE scores. The mean and standard deviation of the
DOPE score of a given protein is estimated from its sequence.
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The mean score of a random protein conformation is estimated
by a weighted sum of protein composition over the 20 standard
amino acid residue types, where each weight corresponds to the
expected change in the score by inserting a specific type of
amino acid residue. The weights are estimated from a separate
training set of 1,686,320 models generated by MODPIPE.

Two PSIPRED (Jones 1999) and DSSP (Kabsch and Sander
1983) agreement scores were also calculated: the percentage of
amino acid residues that had different Q3 states for both the
model and the target sequence (PSIPREDPRCT), and a weighted
score that takes into account the PSIPRED prediction confi-
dence (PSIPREDWEIGHT). These scores were implemented as
described elsewhere (Eramian et al. 2006).

Flowchart for predicting RMSD and NO3.5Å

A flowchart outlining the steps taken to create a tailored training
set and make SVM predictions is presented in Figure 6. Once a
model is built, ;20 sec of CPU are needed to calculate the nine
individual assessment criteria, followed by an additional 10 sec
for the filtering and SVM stages; additional time is required if
PSIPRED predictions have not been precalculated.

The first step is to determine whether or not the aligned target
and template sequences share more than 85% sequence identity
(Fig. 6). If so, the RMSD and native overlap are predicted to be
0.5 Å and 1.0, respectively, and no further steps are taken
because nearly all comparative models built on templates
sharing such high sequence identity are native-like; only 0.9%
of the test models surpass this threshold. The second step is to
store the PDB identification code as well as starting and ending
residue indices of the template used to produce each model.

Next, in the filtering step, the 5,790,889 model training
database is first scanned to find all examples where the same
region of the template was used either as a template or was itself
the target sequence, modeled using a different template. A
region is considered equivalent if the starting and ending points
are each within 10 residues of the modeled region and its overall
length is within 10% of the length of the model. If an entry in
the training database used a chain from the same PDB file as the
query target sequence, the entry was omitted to ensure that
the tailored training set does not result in overestimating the
accuracy of the method. Next, potential matches are filtered by
the statistical potential scores and are included in the tailored
training set only if the Z-PAIR, Z-SURFACE, and Z-COM-
BINED scores are each within 2 units of the score for the input
model, and the N-DOPE score is within 0.5 units of that of the
model.

If the tailored training set contained fewer than five examples, a
separate filtering procedure is employed to populate the tailored
training set; this occurred for 17% (99,947) of the test set. The
secondary structure content of the input model is calculated using
MODELLER’s model.write_data command. The training database
was then scanned to find all entries whose size is within 10% of
the length of the model, and the helical and strand content are each
within x 6 10%, where x are the values for the model. Entries
from the same PDB file as the query target sequence are again
omitted. Potential matches are then filtered by the statistical
potential scores as described.

Finally, two SVMs are trained to predict the RMSD and
NO3.5Å of the model. The SVMlight software package was used
in regression mode, with a linear kernel, for all SVM training
(Joachims 1999). The nine training features used are the nine
aforementioned assessment scores. Tested values of the epsilon
width of tube for regression training for RMSD varied from 0.01

to 0.2, and values attempted for NO3.5Å ranged from 0.01to 0.1.
The final values selected for the epsilon width of tube for
regression for the RMSD and NO3.5Å predictions were 0.1 and
0.05, respectively. All other SVMlight parameters were kept at
their default values.

Fold assessment

The ability of individual scores to differentiate between correct
and incorrect folds was assessed using receiver operating
characteristic (ROC) plots (Albeck and Borgesen 1990; Metz
et al. 1998), calculated with MODPIPE’s ROC module. This
module plots the true positive rate of classification against the
false positive rate on the x-axis. A model was defined as having
the correct fold if its NO3.5Å value exceeded a threshold; the
two thresholds used were 0.30 and 0.50. If the model is correct,
the prediction is a true positive (TP) if it is classified as correct,
and a true negative (FN ) if it is classified as incorrect. If instead
the model is incorrect, the prediction is a true negative (TN ) if
the model is classified as incorrect, and a false positive (FP) if it
is classified as correct. The true positive and false positive
rates displayed on the ROC plot are calculated by tp ¼ TP/P
and fp ¼ FP/P, where TP is the count of true positives, P is
the sum of true positives and false negatives, FP is the count of
false positives, and N is the sum of true negatives and false
positives.

Comparison to other MQAP programs

To compare the model-specific approach to another approach for
assessing absolute accuracy, the stand-alone version of ProQ
v1.2 (Wallner and Elofsson 2003) was run for all models of the
test set. ProQ is a neural network that predicts the LGScore and
MaxSub of an input model, using a general, rather than a model-
specific, training set. ProQ was run both with (ProQ-SS) and
without (ProQ) PsiPred v2.5 secondary structure predictions
(Jones 1999). We also ran the residue-based score ProQres v1.0
(Wallner and Elofsson 2006) for all models of the test set.
ProQres predicts the accuracy for each residue of an input
model. To obtain a single score for an input model, the ProQres
scores for each residue were summed and divided by the number
of residues in the model.

ModFOLD (McGuffin 2007) is a neural network that com-
bines data from ModSSEA (Pettitt et al. 2005), MODCHECK
(McGuffin and Jones 2003), and ProQ to predict the accuracy of
an input model. ModFOLD was trained using TM-scores (Zhang
and Skolnick 2004) and is available as a web server. The
ModFOLD server (McGuffin 2008) allows a user to upload
.tar.gz files of up to 1000 models; the user must also upload the
sequence of the model(s) being assessed. Because of this manual
task and the high computational demands our 580,317 model set
would place on the ModFOLD hardware, we instead tested the
ModFOLD server (v1.1) by 36,453 randomly selected models
for 225 sequences from our test.

Acknowledgments

We acknowledge funds from Sandler Family Supporting Foun-
dation, U.S. National Institutes of Health (Grants R01-
GM54762, R01-GM083960, U54-RR022220, U54-GM074945,
P01-GM71790, U54-GM074929), U.S. National Science Foun-
dation (Grant IIS-0705196), as well as Hewlett-Packard, Sun

Predicting the accuracy of comparative models

www.proteinscience.org 1891

JOBNAME: PROSCI 17#11 2008 PAGE: 11 OUTPUT: Saturday October 4 18:17:04 2008

csh/PROSCI/170215/ps036061



Microsystems, IBM, NetApp Inc., and Intel Corporation for
hardware gifts.

References

Albeck, M.J. and Borgesen, S.E. 1990. ROC-curve analysis. A statistical
method for the evaluation of diagnostic tests. Ugeskr. Laeger 152: 1650–
1653.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs. Nucleic Acids Res. 25: 3389–3402.

Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J., Chothia, C., and
Murzin, A.G. 2004. SCOP database in 2004: Refinements integrate
structure and sequence family data. Nucleic Acids Res. 32: D226–D229.

Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S.,
Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. 2004. UniProt: The
Universal Protein knowledgebase. Nucleic Acids Res. 32: D115–D119.

Baker, D. and Sali, A. 2001. Protein structure prediction and structural
genomics. Science 294: 93–96.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic
Acids Res. 28: 235–242.

Bjelic, S. and Aqvist, J. 2004. Computational prediction of structure, substrate
binding mode, mechanism, and rate for a malaria protease with a novel type
of active site. Biochemistry 43: 14521–14528.

Bradley, P., Misura, K.M., and Baker, D. 2005. Toward high-resolution de novo
structure prediction for small proteins. Science 309: 1868–1871.

Caffrey, C.R., Placha, L., Barinka, C., Hradilek, M., Dostal, J., Sajid, M.,
McKerrow, J.H., Majer, P., Konvalinka, J., and Vondrasek, J. 2005.
Homology modeling and SAR analysis of Schistosoma japonicum cathepsin
D (SjCD) with statin inhibitors identify a unique active site steric barrier with
potential for the design of specific inhibitors. Biol. Chem. 386: 339–349.

Chakravarty, S. and Sanchez, R. 2004. Systematic analysis of added-value in
simple comparative models of protein structure. Structure 12: 1461–1470.

Chmiel, A.A., Radlinska, M., Pawlak, S.D., Krowarsch, D., Bujnicki, J.M., and
Skowronek, K.J. 2005. A theoretical model of restriction endonuclease
NlaIV in complex with DNA, predicted by fold recognition and validated
by site-directed mutagenesis and circular dichroism spectroscopy. Protein
Eng. Des. Sel. 18: 181–189.

Chothia, C. and Lesk, A.M. 1986. The relation between the divergence of
sequence and structure in proteins. EMBO J. 5: 823–826.

Colubri, A., Jha, A.K., Shen, M.Y., Sali, A., Berry, R.S., Sosnick, T.R., and
Freed, K.F. 2006. Minimalist representations and the importance of nearest
neighbor effects in protein folding simulations. J. Mol. Biol. 363: 835–
857.

Costache, A.D., Pullela, P.K., Kasha, P., Tomasiewicz, H., and Sem, D.S. 2005.
Homology-modeled ligand-binding domains of zebra fish estrogen recep-
tors a, b1, and b2: From in silico to in vivo studies of estrogen interactions
in Danio rerio as a model system. Mol. Endocrinol 19: 2979–2990.

Domingues, F.S., Koppensteiner, W.A., Jaritz, M., Prlic, A., Weichenberger, C.,
Wiederstein, M., Floeckner, H., Lackner, P., and Sippl, M.J. 1999.
Sustained performance of knowledge-based potentials in fold recognition.
Proteins Suppl 3: 112–120.

Eramian, D., Shen, M.Y., Devos, D., Melo, F., Sali, A., and Marti-Renom, M.A.
2006. A composite score for predicting errors in protein structure models.
Protein Sci. 15: 1653–1666.

Eswar, N., John, B., Mirkovic, N., Fiser, A., Ilyin, V.A., Pieper, U., Stuart, A.C.,
Marti-Renom, M.A., Madhusudhan, M.S., Yerkovich, B., et al. 2003. Tools
for comparative protein structure modeling and analysis. Nucleic Acids Res.
31: 3375–3380.

Eswar, N., Webb, B.M., Marti-Renom, M., Madhusudhan, M.S., Eramian, D.,
Shen, M.Y., Pieper, U., and Sali, A. 2007. Comparative protein structure
modeling using MODELLER. Curr. Protoc. Protein Sci. Chapter 2: Unit 2.9.

Fiser, A., Do, R.K., and Sali, A. 2000. Modeling of loops in protein structures.
Protein Sci. 9: 1753–1773.

Fitzgerald, J.E., Jha, A.K., Colubri, A., Sosnick, T.R., and Freed, K.F. 2007.
Reduced Cb statistical potentials can outperform all-atom potentials in
decoy identification. Protein Sci. 16: 2123–2139.

Gao, X., Bu, D., Li, S.C., Xu, J., and Li, M. 2007. FragQA: Predicting local
fragment quality of a sequence-structure alignment. Genome Inform. 19:
27–39.

Gatchell, D.W., Dennis, S., and Vajda, S. 2000. Discrimination of near-native
protein structures from misfolded models by empirical free energy
functions. Proteins 41: 518–534.

Ginalski, K., Grishin, N.V., Godzik, A., and Rychlewski, L. 2005. Practical
lessons from protein structure prediction. Nucleic Acids Res. 33: 1874–
1891.

Hubbard, S.J., Campbell, S.F., and Thornton, J.M. 1991. Molecular recognition.
Conformational analysis of limited proteolytic sites and serine proteinase
protein inhibitors. J. Mol. Biol. 220: 507–530.

Jaroszewski, L., Li, W., and Godzik, A. 2002. In search for more accurate
alignments in the twilight zone. Protein Sci. 11: 1702–1713.

Joachims, T. 1999. Making large-scale SVM learning practical. In Advances in
kernel methods: Support vector learning (eds. B. Schölkopf et al.). MIT
Press, Cambridge, MA.

Jones, D.T. 1999. Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292: 195–202.

Kabsch, W. and Sander, C. 1983. Dictionary of protein secondary struc-
ture: Pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers 22: 2577–2637.

Lazaridis, T. and Karplus, M. 1999. Discrimination of the native from
misfolded protein models with an energy function including implicit
solvation. J. Mol. Biol. 288: 477–487.

Lazaridis, T. and Karplus, M. 2000. Effective energy functions for protein
structure prediction. Curr. Opin. Struct. Biol. 10: 139–145.

Lee, B. and Richards, F.M. 1971. The interpretation of protein structures:
Estimation of static accessibility. J. Mol. Biol. 55: 379–400.

Lu, M., Dousis, A.D., and Ma, J. 2008. OPUS-PSP: An orientation-dependent
statistical all-atom potential derived from side-chain packing. J. Mol. Biol.
376: 288–301.

Madhusudhan, M.S., Marti-Renom, M.A., Sanchez, R., and Sali, A. 2006.
Variable gap penalty for protein sequence-structure alignment. Protein Eng.
Des. Sel. 19: 129–133.

Marko, A.C., Stafford, K., and Wymore, T. 2007. Stochastic pairwise align-
ments and scoring methods for comparative protein structure modeling.
J. Chem. Inf. Model 47: 1263–1270.

Marti-Renom, M.A., Stuart, A.C., Fiser, A., Sanchez, R., Melo, F., and Sali, A.
2000. Comparative protein structure modeling of genes and genomes.
Annu. Rev. Biophys. Biomol. Struct. 29: 291–325.

Marti-Renom, M.A., Madhusudhan, M.S., and Sali, A. 2004. Alignment of
protein sequences by their profiles. Protein Sci. 13: 1071–1087.

McGuffin, L.J. 2007. Benchmarking consensus model quality assessment for
protein fold recognition. BMC Bioinformatics 8: 345.

McGuffin, L.J. 2008. The ModFOLD server for the quality assessment of
protein structural models. Bioinformatics 24: 586–587.

McGuffin, L.J. and Jones, D.T. 2003. Improvement of the GenTHREADER
method for genomic fold recognition. Bioinformatics 19: 874–881.

Melo, F. and Feytmans, E. 1997. Novel knowledge-based mean force potential
at atomic level. J. Mol. Biol. 267: 207–222.

Melo, F. and Feytmans, E. 1998. Assessing protein structures with a non-local
atomic interaction energy. J. Mol. Biol. 277: 1141–1152.

Melo, F. and Sali, A. 2007. Fold assessment for comparative protein structure
modeling. Protein Sci. 16: 2412–2426.

Melo, F., Sanchez, R., and Sali, A. 2002. Statistical potentials for fold
assessment. Protein Sci. 11: 430–448.

Metz, C.E., Herman, B.A., and Roe, C.A. 1998. Statistical comparison of two
ROC-curve estimates obtained from partially paired datasets. Med. Decis.
Making 18: 110–121.

Miyazawa, S. and Jernigan, R.L. 1996. Residue-residue potentials with a
favorable contact pair term and an unfavorable high packing density term,
for simulation and threading. J. Mol. Biol. 256: 623–644.

Park, B. and Levitt, M. 1996. Energy functions that discriminate X-ray and
near-native folds from well-constructed decoys. J. Mol. Biol. 258: 367–392.

Park, B.H., Huang, E.S., and Levitt, M. 1997. Factors affecting the ability of
energy functions to discriminate correct from incorrect folds. J. Mol. Biol.
266: 831–846.

Pettitt, C.S., McGuffin, L.J., and Jones, D.T. 2005. Improving sequence-based
fold recognition by using 3D model quality assessment. Bioinformatics
21: 3509–3515.

Pieper, U., Eswar, N., Davis, F.P., Braberg, H., Madhusudhan, M.S., Rossi, A.,
Marti-Renom, M., Karchin, R., Webb, B.M., Eramian, D., et al. 2006.
MODBASE: A database of annotated comparative protein structure models
and associated resources. Nucleic Acids Res. 34: D291–D295.

Qiu, J., Sheffler, W., Baker, D., and Noble, W.S. 2007. Ranking predicted protein
structures with support vector regression. Proteins 71: 1175–1182.

Rai, B.K. and Fiser, A. 2006. Multiple mapping method: A novel approach to
the sequence-to-structure alignment problem in comparative protein struc-
ture modeling. Proteins 63: 644–661.

Rost, B. 1999. Twilight zone of protein sequence alignments. Protein Eng. 12:
85–94.

Eramian et al.

1892 Protein Science, vol. 17

JOBNAME: PROSCI 17#11 2008 PAGE: 12 OUTPUT: Saturday October 4 18:17:04 2008

csh/PROSCI/170215/ps036061



Sali, A. and Blundell, T.L. 1993. Comparative protein modelling by satisfaction
of spatial restraints. J. Mol. Biol. 234: 779–815.

Samudrala, R. and Levitt, M. 2000. Decoys ‘R’ Us: A database of incorrect
conformations to improve protein structure prediction. Protein Sci. 9:
1399–1401.

Sanchez, R., Pieper, U., Melo, F., Eswar, N., Marti-Renom, M.A.,
Madhusudhan, M.S., Mirkovic, N., and Sali, A. 2000. Protein structure
modeling for structural genomics. Nat. Struct. Biol. 7: 986–990.

Sauder, J.M., Arthur, J.W., and Dunbrack Jr., R.L. 2000. Large-scale compar-
ison of protein sequence alignment algorithms with structure alignments.
Proteins 40: 6–22.

Seok, C., Rosen, J.B., Chodera, J.D., and Dill, K.A. 2003. MOPED: Method
for optimizing physical energy parameters using decoys. J. Comput. Chem.
24: 89–97.

Shen, M.Y. and Sali, A. 2006. Statistical potential for assessment and prediction
of protein structures. Protein Sci. 15: 2507–2524.

Shen, M.Y., Davis, F.P., and Sali, A. 2005. The optimal size of a globular protein
domain: A simple sphere-packing model. Chem. Phys. Lett. 405: 224–228.

Shortle, D., Simons, K.T., and Baker, D. 1998. Clustering of low-energy
conformations near the native structures of small proteins. Proc. Natl. Acad.
Sci. 95: 11158–11162.

Siew, N., Elofsson, A., Rychlewski, L., and Fischer, D. 2000. MaxSub: An
automated measure for the assessment of protein structure prediction
quality. Bioinformatics 16: 776–785.

Sippl, M.J. 1993. Recognition of errors in three-dimensional structures of
proteins. Proteins 17: 355–362.

Smith, T.F. and Waterman, M.S. 1981. Identification of common molecular
subsequences. J. Mol. Biol. 147: 195–197.

Tondel, K. 2004. Prediction of homology model quality with multivariate
regression. J. Chem. Inf. Comput. Sci. 44: 1540–1551.

Tramontano, A., Leplae, R., and Morea, V. 2001. Analysis and assessment
of comparative modeling predictions in CASP4. Proteins Suppl 5: 22–38.

Tsai, J., Bonneau, R., Morozov, A.V., Kuhlman, B., Rohl, C.A., and Baker, D.
2003. An improved protein decoy set for testing energy functions for
protein structure prediction. Proteins 53: 76–87.

Wallner, B. and Elofsson, A. 2003. Can correct protein models be identified?
Protein Sci. 12: 1073–1086.

Wallner, B. and Elofsson, A. 2006. Identification of correct regions in protein
models using structural, alignment, and consensus information. Protein Sci.
15: 900–913.

Xu, W., Yuan, X., Xiang, Z., Mimnaugh, E., Marcu, M., and Neckers, L. 2005.
Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90
chaperone complex. Nat. Struct. Mol. Biol. 12: 120–126.

Zhang, Y. and Skolnick, J. 2004. Scoring function for automated assessment of
protein structure template quality. Proteins 57: 702–710.

Zhou, H. and Zhou, Y. 2002. Distance-scaled, finite ideal-gas reference state
improves structure-derived potentials of mean force for structure selection
and stability prediction. Protein Sci. 11: 2714–2726.

Predicting the accuracy of comparative models

www.proteinscience.org 1893

JOBNAME: PROSCI 17#11 2008 PAGE: 13 OUTPUT: Saturday October 4 18:17:05 2008

csh/PROSCI/170215/ps036061


